Home

Generics

 

Generic Methods

 

Introduction

As is usually done, imagine you want to pass different types of values to various methods of a class to primarily accomplish the same purpose. You may be tempted to overloaded a method in various versions as follows:

using System;

public class Generator
{
    // Display the value of an integer
    public void Show(int value)
    {
        Console.WriteLine(value);
    }

    // Display the value of a double-precesion value
    public void Show(double value)
    {
        Console.WriteLine(value);
    }

    // Display the value of a character
    public void Show(char value)
    {
        Console.WriteLine(value);
    }
}
public class Exercise
{
    static int Main()
    {
        var exo = new Generator();
        
        // Call the version of the method that displays an integer
        exo.Show(246);
        
        // Call the version of the method that displays a character
        exo.Show('G');
        
        // Call the version of the method that displays a decimal
        exo.Show(355.65);
        
        return 0;
    }
}

This would produce:

246
G
355.65
Press any key to continue . . .

We passed a constant value directly to the method when we called it. Remember that you can also first declare a variable, assign it a value, and then pass that variable to the method. Here are examples:

public class Exercise
{
    static int Main()
    {
        var exo = new Generator();

        // Call the version of the method that displays an integer
        var Value1 = 246;
        exo.Show(Value1);

        // Call the version of the method that displays a character
        var Value2 = 'G';
        exo.Show(Value2);

        // Call the version of the method that displays a decimal
        var Value3 = 355.65;
        exo.Show(Value3);

        return 0;
    }
}

Although this is based on the concept of method overloading, another way you can solve this type of problem is to create one method that doesn't know the type of value that would be passed to it but the method is equipped to process the value appropriately. Based on the above program, you can create one method that takes an argument and it displays its value. To do this, at the time you are defining the method, you only let it know that it would receive an argument but you don't specify the type of value that it will process. Such a method is referred to as generic.

Practical LearningPractical Learning: Introducing Generics

  1. Start Microsoft Visual C# and create a new Console Application named CommercialStore1
  2. To create a new class, on the main menu, click Project -> Add Class...
  3. Set the Name to StoreItem and press Enter
  4. Change the file as follows:
     
    using System;
    using System.Collections.Generic;
    using System.Linq;
    using System.Text;
    
    namespace CommercialStore1
    {
        public class StoreItem
        {
            public class CItem
            {
                public double Item;
                public CItem Next;
            }
    
            public CItem Head = null;
            public int Size;
    
            public int Count()
            {
                return Size;
            }
    
            public int Add(CItem NewItem)
            {
                CItem Sample = new CItem();
    
                Sample = NewItem;
                Sample.Next = Head;
                Head = Sample;
    
                return Size++;
            }
    
            public CItem Retrieve(int Position)
            {
                CItem Current = Head;
    
                for (int i = Count() - 1; i > Position && Current != null; i--)
                {
                    Current = Current.Next;
                }
    
                return Current;
            }
    
            public void ShowItem(double item)
            {
                Console.WriteLine("Item: {0}", item);
            }
        }
    }
  5. Access the Program.cs file and change it as follows:
     
    using System;
    
    namespace CommercialStore1
    {
        public class Program
        {
            static void Main()
            {
                StoreItem exo = new StoreItem();
                StoreItem.CItem Part;
    
                Part = new StoreItem.CItem();
                Part.Item = 97.43;
                exo.Add(Part);
    
                Part = new StoreItem.CItem();
                Part.Item = 274.87;
                exo.Add(Part);
    
                Part = new StoreItem.CItem();
                Part.Item = 8.7873;
                exo.Add(Part);
    
                Part = new StoreItem.CItem();
                Part.Item = 2764.4;
                exo.Add(Part);
    
                Part = new StoreItem.CItem();
                Part.Item = 92.4662;
                exo.Add(Part);
    
                Part = new StoreItem.CItem();
                Part.Item = 66800.85;
                exo.Add(Part);
    
                Console.WriteLine("-=- List of Items -=-");
    
                for (int i = 0; i < exo.Count(); i++)
                {
                    StoreItem.CItem One = exo.Retrieve(i);
    
                    exo.ShowItem(One.Item);
                }
    
                Console.WriteLine("\nNumber of Items: {0}\n", exo.Count());
            }
        }
    }
  6. Execute the application to see the result
     
    -=- List of Items -=-
    Item: 97.43
    Item: 274.87
    Item: 8.7873
    Item: 2764.4
    Item: 92.4662
    Item: 66800.9
    
    Number of Items: 6
    
    Press any key to continue . . .
  7. Close the DOS window

Generic Method Creation

A generic method is a method that can process a value whose type is known only when the variable is accessed. To create a generic method, on the right side of the name of the method, type the <> operator. Inside of this operator, enter a letter or a name, which is referred to as parameter type. Here is an example:

public class Generator
{
    public void Show<TypeOfValue>()
    {
    }
}

One of the ways you can use the parameter type is to pass an argument to the method. You do this by preceding the name of the argument with the parameter type. Here is an example:

public class Generator
{
    public void Show<TypeOfValue>(TypeOfValue value)
    {
    }
}

In the body of the method, you can process the argument as you see fit. At a minimum, and based on our earlier program, you can simply display the value by passing it to the Console.WriteLine() method. Here is an example:

public class Generator
{
    public void Show<TypeOfValue>(TypeOfValue value)
    {
        Console.WriteLine(value);
    }
}

By tradition, most programmers and most documents use the letter T for the parameter type.

Practical LearningPractical Learning: Creating a Generic Method

  1. To create a generic method, change the ShowItem() method as follows:
     
    public void ShowItem<T>(T item)
    {
          Console.WriteLine("Item: {0}", item);
    }
  2. Save the file

Calling a Generic Method

As mentioned earlier, one of the particularities of a generic method is that, at the time it is defined, the method doesn't know the type of the parameter. This means that, when calling the method, you must make sure you clearly specify the type of value that will be processed. You can do this by directly passing (a constant of) the type of value that the method will process. Here are different examples of calling our Show() method:

using System;

public class Generator
{
    public void Show<TypeOfValue>(TypeOfValue value)
    {
        Console.WriteLine(value);
    }
}

public class Exercise
{
    static int Main()
    {
        var exo = new Generator();

        // Call the version of the function that displays an integer
        var Value1 = 246;
        exo.Show(Value1);

        // Call the version of the function that displays a character
        var Value2 = 'G';
        exo.Show(Value2);

        // Call the version of the function that displays a decimal
        var Value3 = 355.65;
        exo.Show(Value3);
        
        return 0;
    }
}

When complied and executed, this program would produce:

246
G
355.65
Press any key to continue . . .

As an alternative, you can type the name of the method, followed by angle brackets. Inside of the brackets, enter the data type of the value that will be processed. After the angle brackets, open the parentheses and, inside of them, type the constant value that will be processed. Here are examples:

using System;

public class Generator
{
    public void Show<TypeOfValue>(TypeOfValue value)
    {
        Console.WriteLine(value);
    }
}

public class Program
{
    static int Main()
    {
        var exo = new Generator();

        // Call the version of the function that displays an integer
        var Value1 = 246;
        exo.Show<int>(Value1);

        // Call the version of the function that displays a character
        var Value2 = 'G';
        exo.Show<char>(Value2);

        // Call the version of the function that displays a decimal
        var Value3 = 355.65;
        exo.Show<double>(Value3);
        
        return 0;
    }
}

You can also declare the value as a constant before passing it to the method.

Practical LearningPractical Learning: Calling a Generic Method

  1. To specify the parameter type of a generic method when calling it, change the Main() method as follows:
     
    class Program
    {
        static void Main()
        {
            . . .
    
            Console.WriteLine("-=- List of Items -=-");
    
            for (int i = 0; i < exo.Count(); i++)
            {
                Exercise.CItem One = exo.Retrieve(i);
    
                exo.ShowItem<double>(One.Item);
            }
    
            Console.WriteLine("\nNumber of Items: {0}\n", exo.Count());
        }
    }
  2. Execute the application and notice that it works fine
  3. Close the DOS window

A Generic Method With Various Parameters

 

Introduction

Just like a method can take one argument, it can take various generic parameters. You can pass one argument as a known type and the other as a generic type. Here is an example:

using System;

public class Generator
{
    public void Show<TypeOfValue>(string msg, TypeOfValue value)
    {
        Console.WriteLine("{0}: {1}", msg, value);
    }
}

public class Exercise
{
    static int Main()
    {
        var exo = new Generator();

        exo.Show<int>("Integer", 246);

        exo.Show<char>("Character", 'G');

        exo.Show<double>("Decimal", 355.65);
        
        return 0;
    }
}

This would produce:

Integer: 246
Character: G
Decimal: 355.65
Press any key to continue . . .

Although we directly passed the values to the method when calling it, you can first declare a variable before passing it to the method. Here are examples:

using System;

public class Generator
{
    public void Show<TypeOfValue>(string msg, TypeOfValue value)
    {
        Console.WriteLine("{0}: {1}", msg, value);
    }
}

public class Exercise
{
    static int Main()
    {
        var exo = new Generator();

        var message = "Integer";
        const int iValue = 246;
        exo.Show<int>(message, iValue);

        message = "Character";
        const char cValue = 'G';
        exo.Show<char>(message, cValue);

        message = "Decimal";
        const double dValue = 355.65;
        exo.Show<double>(message, dValue);
        
        return 0;
    }
}

Practical LearningPractical Learning: Using a Method With Various Parameters

  1. Access the StoreItem.cs file
  2. To create and use a method with various parameters, make the following changes:
     
    namespace CommercialStore1
    {
        public class StoreItem
        {
            . . .
    
            public void ShowItem<T>(string content, int index, T item)
            {
                Console.WriteLine("{0} {1}: {2}", content, index, item);
            }
        }
    }
  3. Access the Program.cs file and change it as follows:
     
    namespace CommercialStore1
    {   
        class Program
        {
            static void Main()
            {
                . . .
    
                for (int i = 0; i < exo.Count(); i++)
                {
                    Exercise.CItem One = exo.Retrieve(i);
    
                    exo.ShowItem<double>("Item", i+1, One.Item);
                }
    
                Console.WriteLine("\nNumber of Items: {0}\n", exo.Count());
            }
        }
    }
  4. Execute the application
     
    -=- List of Items -=-
    Item 1: 97.43
    Item 2: 274.87
    Item 3: 8.7873
    Item 4: 2764.4
    Item 5: 92.4662
    Item 6: 66800.85
    
    Number of Items: 6
    
    Press any key to continue . . .
  5. Close the DOS window

A Generic Method With Various Parameter Types

As seen above, you can pass different arguments to a method. You can also pass different parameter types, in any appropriate order of your choice, to a method. To pass two parameter types to a method, inside its <> operator, enter the names of two parameter types separated by a comma. Here is an example:

public class Generator
{
    public void Show<FirstType, SecondType>()
    {
    }
}

If you want to use the parameter types, you can pass an argument for each to the method. Remember that each parameter type represents a data type; so you can use it as the type of an argument. Here are examples:

public class Generator
{
    public void Show<FirstType, SecondType>(FirstType first,
                                            SecondType second)
    {
    }
}

In the body of the method, you can then use the arguments as you see fit. For example, you can display their values by passing them to the Console.WriteLine() method. Here is an example:

public class Generator
{
    public void Show<FirstType, SecondType>(FirstType first,
                                            SecondType second)
    {
        Console.WriteLine("First:  {0}\nSecond: {1}\n", first, second);
    }
}

Calling a Generic Method With Various Parameter Types

To call a method that takes various parameters, you can simply pass it the value of each argument. Here is an example:

using System;

public class Generator
{
    public void Show<FirstType, SecondType>(FirstType first,
                                            SecondType second)
    {
        Console.WriteLine("First:  {0}\nSecond: {1}\n", first, second);
    }
}

public class Exercise
{
    static int Main()
    {
        var exo = new Generator();
        
        var iValue = 246;
        var message = "Some Message";
        exo.Show(message, iValue);

        return 0;
    }
}

This would produce:

First:  Some Message
Second: 246

Press any key to continue . . .

An alternative is to specify the type of each argument. To do this, inside the <> operator on the right side of the name of the method, enter the data types separated by a comma. Here are examples:

using System;

public class Generator
{
    public void Show<FirstType, SecondType>(FirstType first,
                                            SecondType second)
    {
        Console.WriteLine("First:  {0}\nSecond: {1}\n", first, second);
    }
}

public class Exercise
{
    static int Main()
    {
        var exo = new Generator();
        
        var iValue = 246;
        var message = "Some Message";
        exo.Show(message, iValue);

        iValue = 85;
        var cValue = 'G';
        exo.Show<int, char>(iValue, cValue);

        var weeklyHours = 42.50d;
        var hourlySalary = 25.05;
        exo.Show<double, double>(weeklyHours, hourlySalary);

        return 0;
    }
}

This would produce:

First:  Some Message
Second: 246

First:  85
Second: G

First:  42.5
Second: 25.05

Press any key to continue . . .

Notice that the arguments can be of the same type or different types. It is up to you to determine the type of a particular argument when calling the method.

Generic Classes

 

Introduction

Like a method, a class can be created as a generic. When a class is created as generic, it is asked to process a value wihtout knowing what type that value is. This means that the class will known the type of value only when it is called.

To create a generic class, on the right side of the name of the class, type the <> operator and enter a name for the parameter type. Here is an example:

public class Exercise<TypeOfValue>
{
}

This parameter type is just a representative of a data type. As a data type, you can use it to declare a variable in the body of the class. Here is an example:

public class Exercise<TypeOfValue>
{
    public TypeOfValue value;
}

After declaring such a variable, you can use it in your application. For example, you can access it outside of the class using the period operator. Inside of the class, one way you can use the variable is to display its value using one of the methods of the class. Here is an example:

public class Exercise<TypeOfValue>
{
    public TypeOfValue value;

    public void Show()
    {
        Console.WriteLine("Value:  {0}\n", value);
    }
}

Practical LearningPractical Learning: Introducing Generic Classes

  1. To start a new program, on the main menu, click the File -> New Project ...
  2. Click Console Application. Set the Name to CommercialStore2 and press Enter
  3. To create a new class, on the main menu, click Project -> Add Class...
  4. Set the Name to ListOfItems and click OK
  5. Change the file as follows:
     
    using System;
    using System.Collections.Generic;
    using System.Linq;
    using System.Text;
    
    namespace CommercialStore2
    {
        public class ListOfItems
        {
            public class CItem
            {
                public double Item;
                public CItem Next;
            }
    
            public ListOfItems()
            {
                Head = null;
                Size = 0;
            }
    
            public CItem Head;
            public int Size;
    
            public int Count()
            {
                return Size;
            }
    
            public int Add(CItem NewItem)
            {
                CItem Sample = new CItem();
    
                Sample = NewItem;
                Sample.Next = Head;
                Head = Sample;
    
                return Size++;
            }
    
            public CItem Retrieve(int Position)
            {
                CItem Current = Head;
    
                for (int i = Count() - 1; i > Position && Current != null; i--)
                {
                    Current = Current.Next;
                }
    
                return Current;
            }
        }
    }
  6. Access the Program.cs file and change it as follows:
     
    using System;
    using System.Collections.Generic;
    using System.Linq;
    using System.Text;
    
    namespace CommercialStore2
    {
        public class Program
        {
            static void Main()
            {
                ListOfItems exo = new ListOfItems();
                ListOfItems.CItem Part;
    
                Part = new ListOfItems.CItem();
                Part.Item = 97.43;
                exo.Add(Part);
    
                Part = new ListOfItems.CItem();
                Part.Item = 274.87;
                exo.Add(Part);
    
                Part = new ListOfItems.CItem();
                Part.Item = 8.7873;
                exo.Add(Part);
    
                Part = new ListOfItems.CItem();
                Part.Item = 2764.4;
                exo.Add(Part);
    
                Part = new ListOfItems.CItem();
                Part.Item = 92.4662;
                exo.Add(Part);
    
                Part = new ListOfItems.CItem();
                Part.Item = 66800.85;
                exo.Add(Part);
    
                Console.WriteLine("-=- List of Items -=-");
    
                for (int i = 0; i < exo.Count(); i++)
                {
                    ListOfItems.CItem One = exo.Retrieve(i);
    
                    Console.WriteLine("Item: {0}", One.Item);
                }
    
                Console.WriteLine("\nNumber of Items: {0}\n", exo.Count());
            }
        }
    }
  7. Execute the application and test it:
     
    -=- List of Items -=-
    Item: 97.43
    Item: 274.87
    Item: 8.7873
    Item: 2764.4
    Item: 92.4662
    Item: 66800.85
    
    Number of Items: 6
    
    Press any key to continue . . .
  8. Close the DOS window

Using a Generic Class

After creating a generic class, you can use it. One way to do this, as we have learned in previous lessons, consists of declaring a variable for it. In previous lessons, to declare a variable of a class, we would write:

Exercise exo = new Exercise();

If the class is generic, on the right side, type the <> operator. Inside of this operator, enter the data type that will be processed as the parameter type of the generic class. Here is an example:

using System;

public class Generator<TypeOfValue>
{
    public TypeOfValue value;

    public void Show()
    {
        Console.WriteLine("Value:  {0}\n", value);
    }
}

public class Exercise
{
    static int Main()
    {
        Generator<int> exo = new Generator<int>();

        return 0;
    }
}

You can also declare a variable of a generic type using the var keyword. To do this, use var on the left side of the variable name, omit the <> operator and the data type. This would be done as follows:

public class Exercise
{
    static int Main()
    {
        var exo = new Generator<int>();

        return 0;
    }
}

After declaring the variable, you can then access the member(s) of the class using the period operator. Here are examples:

using System;

public class Generator<TypeOfValue>
{
    public TypeOfValue value;

    public void Show()
    {
        Console.WriteLine("Value:  {0}\n", value);
    }
}

public class Exercise
{
    static int Main()
    {
        var exo = new Generator<int>();
        
        var iValue = 246;
        exo.value = iValue;
        exo.Show();

        return 0;
    }
}

Passing a Parameter Type to a Method

We saw that you could declare a variable of a parameter type in the generic class. Another way you can use it is to pass it as an argument to a method and make the argument a parameter type. As seen previously, you can use the argument as you see fit. For example, you can display its value to the console. Here is an example:

using System;

public class Generator<TypeOfValue>
{
    public void Show(TypeOfValue value)
    {
        Console.WriteLine("Value:  {0}\n", value);
    }
}

public class Exercise
{
    static int Main()
    {
        var exo = new Generator<int>();
        
        var iValue = 246;
        exo.Show(iValue);

        return 0;
    }
}

In the same way, you can pass the parameter type to a constructor of the class. Here is an example:

public class Generator<TypeOfValue>
{
    private TypeOfValue val;

    public Exercise(TypeOfValue v)
    {
        val = v;
    }
}

Returning a Parameter Type

Besides, or as opposed to, passing a parameter type, you can create a method that returns a parameter type. Once again, you can primarily observe the rules we reviewed for returning a value from a method. Here is an example:

using System;

public class Generator<TypeOfValue>
{
    private TypeOfValue val;

    public Generator(TypeOfValue v)
    {
        val = v;
    }

    public TypeOfValue GetValue()
    {
        return val;
    }
}

public class Exercise
{
    static int Main()
    {
        var exo = new Generator<double>(35.65);

        Console.WriteLine("Value:  {0}\n", exo.GetValue());

        return 0;
    }
}

Practical LearningPractical Learning: Returning a Parameter Type

  1. Open the ListOfItems.cs source file
  2. To apply what we have reviewed, change the file as follows:
     
    using System;
    using System.Collections.Generic;
    using System.Linq;
    using System.Text;
    
    namespace CommercialStore2
    {
        public class ListOfItems
        {
            public class CItem<T>
            {
                public double Item;
                public CItem<T> Next;
            }
    
            public ListOfItems()
            {
                Head = null;
                Size = 0;
            }
    
            public CItem<double> Head;
            public int Size;
    
            public int Count()
            {
                return Size;
            }
    
            public int Add(CItem<double> NewItem)
            {
                CItem<double> Sample = new CItem<double>();
    
                Sample = NewItem;
                Sample.Next = Head;
                Head = Sample;
    
                return Size++;
            }
    
            public CItem<double> Retrieve(int Position)
            {
                CItem<double> Current = Head;
    
                for (int i = Count() - 1; i > Position && Current != null; i--)
                {
                    Current = Current.Next;
                }
    
                return Current;
            }
        }
    }
  3. Access the Program file and change it as follows:
     
    using System;
    using System.Collections.Generic;
    using System.Linq;
    using System.Text;
    
    namespace CommercialStore2
    {
        public class Program
        {
            static void Main()
            {
                ListOfItems exo = new ListOfItems();
                ListOfItems.CItem<double> Part;
    
                Part = new ListOfItems.CItem<double>();
                Part.Item = 97.43;
                exo.Add(Part);
    
                Part = new ListOfItems.CItem<double>();
                Part.Item = 274.87;
                exo.Add(Part);
    
                Part = new ListOfItems.CItem<double>();
                Part.Item = 8.7873;
                exo.Add(Part);
    
                Part = new ListOfItems.CItem<double>();
                Part.Item = 2764.4;
                exo.Add(Part);
    
                Part = new ListOfItems.CItem<double>();
                Part.Item = 92.4662;
                exo.Add(Part);
    
                Part = new ListOfItems.CItem<double>();
                Part.Item = 66800.85;
                exo.Add(Part);
    
                Console.WriteLine("-=- List of Items -=-");
    
                for (int i = 0; i < exo.Count(); i++)
                {
                    ListOfItems.CItem<double> One = exo.Retrieve(i);
    
                    Console.WriteLine("Item: {0}", One.Item);
                }
    
                Console.WriteLine("\nNumber of Items: {0}\n", exo.Count());
            }
        }
    }
  4. Execute the application and test it 
  5. Close the DOS window

A Property of the Parameter Type

You can create a property that is of the parameter type of the generic class. There is no significant rule to follow when creating the property, except that you should remember that, at the time you are creating the property, the class doesn't know the type of the parameter. Here is an example:

using System;

public class Generator<TypeOfValue>
{
    private TypeOfValue val;

    public TypeOfValue Value
    {
        get { return val; }
        set { val = value; }
    }

    public void Show()
    {
        Console.WriteLine("Value:  {0}\n", val);
    }
}

public class Exercise
{
    static int Main()
    {
        var exo = new Generator<int>();
        
        exo.Value = 246;
        exo.Show();

        return 0;
    }
}

A Generic Class With Multiple Parameters

 

Using Multiple Type Parameters

As done for generic methods, when creating a generic class, you can specify more than one parameter type. To do this, in the <> operator, after the first generic type, enter a comma and another generic type. Here is an example:

public class Generator<T, V>
{
}

If you know for sure that the parameters will be of the same type, you can use one method to process both. Otherwise, you can declare the necessary members for each type. You can also create a method that would take many arguments with each argument of a particular type. Here are examples:

using System;

public class Generator<T, V>
{
    private T t;
    private V v;

    public void SetTValue(T value)
    {
        t = value;
    }

    public T GetTValue()
    {
        return t;
    }

    public void SetVValue(V value)
    {
        v = value;
    }
    public V GetVValue()
    {
        return v;
    }

    public  void Show(T tValue, V vValue)
    {
        Console.WriteLine("First:  {0}\nSecond: {1}", tValue, vValue);
    }
}

When declaring a variable for the class, make sure you appropriately specify the list of parameter types. Here are two examples:

public class Exercise
{
    static int Main()
    {
        Generator<int, int> IntTypes = new Generator<int, int>();
        IntTypes.SetTValue(246);
        IntTypes.SetVValue(6088);
        IntTypes.Show(IntTypes.GetTValue(), IntTypes.GetVValue());

        Generator<double, double> DoubleTypes = new Generator<double, double>();
        DoubleTypes.SetTValue(355.65);
        DoubleTypes.SetVValue(1785.426);
        DoubleTypes.Show(DoubleTypes.GetTValue(), DoubleTypes.GetVValue());

        Generator<short, decimal> Disparate = new Generator<short, decimal>();
        DoubleTypes.SetTValue(42);
        DoubleTypes.SetVValue(245580.35);
        DoubleTypes.Show(DoubleTypes.GetTValue(), DoubleTypes.GetVValue());
        
        return 0;
    }
}

You can also declare the variable using the var keyword. To do this, on the left side of the assignment operator, type only the var keyword and the name of the operator. Here is an example:

public class Exercise
{
    static int Main()
    {
        var IntTypes = new Generator<int, int>();
        IntTypes.SetTValue(246);
        IntTypes.SetVValue(6088);
        IntTypes.Show(IntTypes.GetTValue(), IntTypes.GetVValue());

        var DoubleTypes = new Generator<double, double>();
        DoubleTypes.SetTValue(355.65);
        DoubleTypes.SetVValue(1785.426);
        DoubleTypes.Show(DoubleTypes.GetTValue(), DoubleTypes.GetVValue());

        var Disparate = new Generator<short, decimal>();
        DoubleTypes.SetTValue(42);
        DoubleTypes.SetVValue(245580.35);
        DoubleTypes.Show(DoubleTypes.GetTValue(), DoubleTypes.GetVValue());
        
        return 0;
    }
}

This would produce:

First:  246
Second: 6088
First:  355.65
Second: 1785.426
First:  42
Second: 245580.35
Press any key to continue . . .

If a generic class has more than one parameter type, they don't have to be of the same type. At the time you are creating the class, you may not specify their types but you can anticipate that they would be different. It is when you declare the variable that you would need to determine their precise types.

Even if the parameters are of primitive types, you can first declare the variables and pass them to the class.

A Class as a Parameter Type

So far, in our examples, we treated the parameter type as a primitive data type. A parameter type can also be a formal class, either one that you created yourself or one that exists as part of the C# language. When creating the generic class, you must follow all the rules we have reviewed so far for generic classess. Here is such a simple class:

public class Generator
{
    public void Show(TypeOfValue val)
    {
        Console.WriteLine("{0}\n", val.ToString());
    }
}

As mentioned already, the class that would be processed by the generic one must have been previously created so it can be used as a parameter. When declaring a variable of the generic class, make sure you enter the name of the normal class in place of the parameter type. Everything else is as we have done so far. Here is an example:

using System;

public class FourSideGeometricFigure
{
    private string nm;
    private double bs;
    private double hg;

    public string Name
    {
        get { return nm; }
        set { nm = value; }
    }

    public double Base
    {
        get { return bs; }
        set { bs = value; }
    }

    public double Height
    {
        get { return hg; }
        set { hg = value; }
    }

    public double Area
    {
        get { return bs * hg; }
    }

    public override string ToString()
    {
        string result = "Type:   " + nm + "\n" +
                        "Base:   " + bs.ToString() + "\n" +
                        "Height: " + hg.ToString() + "\n" +
                        "Area:   " + Area.ToString();
        return result;
    }
}

public class Generator<TypeOfValue>
{
    public void Show(TypeOfValue val)
    {
        Console.WriteLine("{0}\n", val.ToString());
    }
}

public class Exercise
{
    static int Main()
    {
        var sqr = new FourSideGeometricFigure();
        sqr.Name = "Square";
        sqr.Base = 36.82;
        sqr.Height = 36.82;
        Generator<FourSideGeometricFigure> exoSquare =
                new Generator<FourSideGeometricFigure>();
        exoSquare.Show(sqr);

        FourSideGeometricFigure rect = new FourSideGeometricFigure();
        rect.Name = "Rectangle";
        rect.Base = 52.94;
        rect.Height = 27.58;

        Generator<FourSideGeometricFigure> exoRect =
                new Generator<FourSideGeometricFigure>();
        exoRect.Show(rect);
        return 0;
    }
}

You can also declare the variable using the var keyword. Here are examples:

public class Exercise
{
    static int Main()
    {
        var sqr = new FourSideGeometricFigure();
        sqr.Name = "Square";
        sqr.Base = 36.82;
        sqr.Height = 36.82;
        var exoSquare = new Generator<FourSideGeometricFigure>();
        exoSquare.Show(sqr);

        FourSideGeometricFigure rect = new FourSideGeometricFigure();
        rect.Name = "Rectangle";
        rect.Base = 52.94;
        rect.Height = 27.58;

        var exoRect = new Generator<FourSideGeometricFigure>();
        exoRect.Show(rect);
        return 0;
    }
}

This would produce:

Type:   Square
Base:   36.82
Height: 36.82
Area:   1355.7124


Type:   Rectangle
Base:   52.94
Height: 27.58
Area:   1460.0852

Press any key to continue . . .

In the same way, you can create a generic class that takes more than one parameter

Generic Classes and Inheritance

 

Introduction

Consider the following geometric figures:

Square Parallelogram
Square Rectangle Trapezoid Parallelogram

Notice that these are geometric figures with each having four sides. From what we know so far, we can create a base class to prepare it for inheritance. If the class is very general, we can make it a generic one. We can set a data type as an unknown type, anticipating that the dimensions of the figure can be considered as integer or double-precision types. Here is an example:

using System;

public class Quadrilateral<T>
{
        protected T _base;
        protected T _height;
        protected string _name;

        public virtual T Base
        {
            get { return _base; }
            set { _base = value; }
        }

        public virtual T Height
        {
            get { return _height; }
            set { _height = value; }
        }

        public virtual string Name
        {
            get { return _name; }
            set { _name = value; }
        }

        public Quadrilateral()
        {
            _name = "Quadrilateral";
        }

        public Quadrilateral(string name)
        {
            _name = "Quadrilateral";
        }

        public Quadrilateral(T bs, T height)
        {
            _name = "Quadrilateral";
            _base = bs;
            _height = height;
        }

        public Quadrilateral(string name, T bs, T height)
        {
            _name = name;
            _base = bs;
            _height = height;
        }


        public virtual string Describe()
        {
            return "A quadrilateral is a geometric figure with four sides";
        }

        public virtual void ShowCharacteristics()
        {
            Console.WriteLine("Geometric Figure: {0}", Name);
            Console.WriteLine("Description:      {0}", Describe());
            Console.WriteLine("Base:             {0}", Base);
            Console.WriteLine("Height:           {0}", Height);
        }
}

public class Exercise
{
    static int Main()
    {
        // Trapezoid with equal sides
        var Kite = new Quadrilateral<double>("Beach Kite", 18.64, 18.64);
        Kite.ShowCharacteristics();
        Console.WriteLine();

        // Rectangle, in meters
        var BasketballStadium = new Quadrilateral<Byte>();
        BasketballStadium.Name = "Basketball Stadium";
        BasketballStadium.Base = 15;
        BasketballStadium.Height = 28;
        BasketballStadium.ShowCharacteristics();
        Console.WriteLine();

        return 0;
    }
}

This would produce:

Geometric Figure: Beach Kite
Description:      A quadrilateral is a geometric figure with four sides
Base:             18.64
Height:           18.64

Geometric Figure: Basketball Stadium
Description:      A quadrilateral is a geometric figure with four sides
Base:             15
Height:           28

Press any key to continue . . .

If you have a generic class that can serve as a foundation for another class, you can derive one class from the generic one. To do this, use the formula we apply when deriving a class but follow the name of each class with <>. Inside of the <> operator, enter the same identifier to indicate that the class is a generic type that is based on another generic class. Here is an example:

public class Square<T> : Quadrilateral<T>
{
}

In the body of the new class, you can use the parameter type as you see fit. For example, you can declare some member variables of that type. You can create methods that return the parameter type or you can pass arguments of the parameter type. When implementing the methods of the new class, use the member variables of the parameter and the argument(s) based on the parameter type as you see fit. You can then declare a variable of the class and use it as we done so far for other generic classes. Here is an example:

using System;

public class Quadrilateral<T>
{
        protected T _base;
        protected T _height;
        protected string _name;

        public virtual T Base
        {
            get { return _base; }
            set { _base = value; }
        }

        public virtual T Height
        {
            get { return _height; }
            set { _height = value; }
        }

        public virtual string Name
        {
            get { return _name; }
            set { _name = value; }
        }

        public Quadrilateral()
        {
            _name = "Quadrilateral";
        }

        public Quadrilateral(string name)
        {
            _name = "Quadrilateral";
        }

        public Quadrilateral(T bs, T height)
        {
            _name = "Quadrilateral";
            _base = bs;
            _height = height;
        }

        public Quadrilateral(string name, T bs, T height)
        {
            _name = name;
            _base = bs;
            _height = height;
        }


        public virtual string Describe()
        {
            return "A quadrilateral is a geometric figure with four sides";
        }

        public virtual void ShowCharacteristics()
        {
            Console.WriteLine("Geometric Figure: {0}", Name);
            Console.WriteLine("Description:      {0}", Describe());
            Console.WriteLine("Base:             {0}", Base);
            Console.WriteLine("Height:           {0}", Height);
        }
}

public class Square<T> : Quadrilateral<T>
{
        public Square()
        {
            _name = "Square";
        }
        public Square(string name)
        {
            _name = "Square";
        }
        public Square(T side)
        {
            _name = "Square";
            _base = side;
            _height = side;
        }
        public Square(string name, T side)
        {
            _name = name;
            _base = side;
            _height = side;
        }
        public override string Describe()
        {
            return "A square is a quadrilateral with four equal sides";
        }
        public override void ShowCharacteristics()
        {
            Console.WriteLine("Geometric Figure: {0}", Name);
            Console.WriteLine("Description:      {0}", Describe());
            Console.WriteLine("                  {0}", Describe());
            Console.WriteLine("Side:             {0}", Base);
        }
}

public class Exercise
{
    static int Main()
    {
        // Rectangle, in meters
        var plate = new Square<Byte>();

        plate.Name   = "Plate";
	plate.Base   = 15;
        plate.Height = 28;
	plate.ShowCharacteristics();

        Console.WriteLine();
        return 0;
    }
}

This would produce:

Geometric Figure: Plate
Description:      A quadrilateral is a geometric figure with four sides
                  A square is a quadrilateral with four equal sides
Side:             15

Press any key to continue . . .

Generic Classes and Interfaces

As done for a generic class, you can create a generic interface that would serve as the base for generic classes. To proceed, when creating the interface, follow its name with a <> declaration and, inside of the <> operator, enter an identifier for the parameter type. Here is an example:

public interface IGeometry<T>
{
    string Name { get; set; }
    void Display();
}

Since this is a generic interface, like an interface class, when deriving a class from it, follow the formula we reviewed for inheriting from a generic class. Here is an example:

using System;

public interface IGeometry<T>
{
    string Name { get; set; }
    void Display();
}

public class Round<T> : IGeometry<T>
{
}

When implementing the derived class, you must observe all rules that apply to interface derivation. Here is an example:

using System;

public interface IGeometry<T>
{
    string Name { get; set; }
    void Display();
}

public class Round<T> : IGeometry<T>
{
    private string _name;

    public Round()
    {
        _name = "Unknown";
    }
    public Round(string name)
    {
        _name = name;
    }

    public virtual string Name
    {
        get { return _name; }
        set { _name = value; }
    }

    public virtual void Display()
    {
        Console.WriteLine("Name: {0}", Name);
    }
}

public class Exercise
{
    static int Main()
    {
        var rnd = new Round<decimal>();

        rnd.Name = "General Round Shape";
        rnd.Display();

        Console.WriteLine();
        return 0;
    }
}

This would produce:

Name: General Round Shape

Press any key to continue . . .

In the same way, you can derive a generic class from another generic class that derived from a generic interface.

Constraining a Generic Class

Imagine you create a regular interface such as the following:

public interface IGeometry
{
    string Name { get; set; }
    void Display();
}

Then imagine you derive a regular class from it. Here is an example:

using System;

public interface IGeometry
{
    string Name { get; set; }
    void Display();
}

public class Round : IGeometry
{
    private string _name;
    private double _rad;

    public Round()
    {
        _name = "Unknown";
    }
    public Round(string name)
    {
        _name = name;
        _rad = 0.00;
    }
    public Round(string name, double radius)
    {
        _name = name;
        _rad = radius;
    }

    public virtual string Name
    {
        get { return _name; }
        set { _name = value; }
    }

    public double Radius
    {
        get { return _rad; }
        set
        {
            _rad = (value <= 0) ? 0.00 : value;
        }
    }

    public virtual void Display()
    {
        Console.WriteLine("Name:   {0}", Name);
        Console.WriteLine("Radius: {0}", Radius);
    }
}

public class Exercise
{
    static int Main()
    {
        var rnd = new Round();

        rnd.Name = "General Round Shape";
        rnd.Radius = 38.24;
        rnd.Display();

        Console.WriteLine();
        return 0;
    }
}

You may be tempted to derive just any type of class from it. One of the features of generics is that you can create a class that must implement the functionality of a certain abstract class of your choice. For example, when creating a generic class, you can oblige it to implement the functionality of a certain interface or you can make sure that the class is derived from a specific base class. This would make sure that the generic class surely contains some useful functionality.

To create a constraint on a generic class, after the <TypeName> operator, type where TypeName : followed by the rule that the class must follow. For example, you may want the generic class to implement the functionality of a pre-defined class. You can create the generic class as follows:

public interface IGeometry
{
}

public class Round : IGeometry
{
}

public class Sphere<T>
where T : Round
{
}

After creating the class, you must implement the virtual members of the where class/interface, using the rules of generic classes, the way we have done it so far. When declaring a variable for the generic class, in its <> operator, you must enter an object of the base class. Here is an example:

using System;

public interface IGeometry
{
    string Name { get; set; }
    void Display();
}

public class Round : IGeometry
{
    private string _name;
    private double _rad;

    public Round()
    {
        _name = "Unknown";
    }
    public Round(string name)
    {
        _name = name;
        _rad = 0.00;
    }
    public Round(string name, double radius)
    {
        _name = name;
        _rad = radius;
    }

    public virtual string Name
    {
        get { return _name; }
        set { _name = value; }
    }

    public double Radius
    {
        get { return _rad; }
        set
        {
            _rad = (value <= 0) ? 0.00 : value;
        }
    }

    public virtual void Display()
    {
        Console.WriteLine("Name:   {0}", Name);
        Console.WriteLine("Radius: {0}", Radius);
    }
}

public class Sphere<T>
where T : Round
{
    private T _t;

    public Sphere() { }
    public Sphere(T fig)
    {
        _t = fig;
    }
    public T Figure
    {
        get { return _t; }
        set { _t = value; }
    }
}

public class Exercise
{
    static int Main()
    {
        var rnd = new Round();

        rnd.Name = "Circle";
        rnd.Radius = 60.12;

        Sphere<Round> sph = new Sphere<Round>();
        sph.Figure = rnd;
        Console.WriteLine("Circle Characteristics");
        Console.WriteLine("Name:   {0}", sph.Figure.Name);
        Console.WriteLine("Radius: {0}", sph.Figure.Radius);

        Console.WriteLine();
        return 0;
    }
}

This would produce:

Circle Characteristics
Name:   Circle
Radius: 60.12

Press any key to continue . . .

You can also create a constraint so that a generic class implements an interface.

 

Previous Copyright © 2008-2016, FunctionX, Inc. Next